Year 7-10 Formula Sheet

Year 7

Angles

Vertically opposite angles are equal

$$
x=67
$$

Alternate angles on parallel lines are equal

Corresponding angles on parallel lines are equal

$$
x=137
$$

Co-interior angles on parallel lines are supplementary

$$
\begin{aligned}
& x+125=180 \\
& x=55
\end{aligned}
$$

Geometry

Angle sum of a triangle is 180°

$$
\begin{aligned}
& x+67+34=180 \\
& x+101=180 \\
& x=79
\end{aligned}
$$

Exterior angle of a triangle equals the sum of the opposite interior angles

$$
\begin{aligned}
& x=68+47 \\
& x=115
\end{aligned}
$$

Angle sum of a quadrilateral is 360°

Area and Volume

Area of a rectangle

$$
A=l \times b
$$

$l \quad$ is length
$b \quad$ is breadth
Area of a triangle

$$
A=\frac{1}{2} b h
$$

$b \quad$ is base
$h \quad$ is perpendicular height

Area of a parallelogram

$$
A=b \times h
$$

$b \quad$ is base
$h \quad$ is perpendicular height

Volume of a rectangular prism

$$
V=l \times b \times h
$$

l is length
$b \quad$ is breadth
h is height

Year 8

Pythagoras' Theorem

$$
c^{2}=a^{2}+b^{2}
$$

Algebra

Index laws

$$
\begin{aligned}
x^{m} \times x^{n} & =x^{m+n} \\
x^{m} \div x^{n} & =x^{m-n} \\
\left(x^{m}\right)^{n} & =x^{m n} \\
x^{0} & =1
\end{aligned}
$$

Area and Volume

Area of a trapezium

$$
A=\frac{1}{2} h(a+b)
$$

$h \quad$ is perpendicular height $a, b \quad$ are the parallel sides

Area of a kite and rhombus

$$
A=\frac{1}{2} x y
$$

x, y are the diagonals

Circumference of a circle

$$
\begin{aligned}
& C=2 \pi r \\
& C=\pi d
\end{aligned}
$$

$r \quad$ is the radius
d is the diameter

Length of an arc

$$
l=\frac{\theta}{360} \times 2 \pi r
$$

$r \quad$ is the radius

Area of a circle

$$
A=\pi r^{2}
$$

$r \quad$ is the radius

Area of a sector

$$
A=\frac{\theta}{360} \times \pi r^{2}
$$

$r \quad$ is the radius

Volume of a cylinder

$$
V=\pi r^{2} h
$$

$r \quad$ is the radius
$h \quad$ is the height

Year 9

Pythagoras' Theorem and Surds

Surd rules

$$
\begin{gathered}
\sqrt{x y}=\sqrt{x} \times \sqrt{y} \\
\sqrt{\frac{x}{y}}=\frac{\sqrt{x}}{\sqrt{y}} \\
(\sqrt{x})^{2}=x
\end{gathered}
$$

Trigonometry

Trigonometric ratios

$$
\begin{gathered}
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \\
\tan \theta=\frac{\text { opposite }}{\text { adjacent }}
\end{gathered}
$$

Indices

Index laws

$$
\begin{gathered}
x^{-m}=\frac{1}{x^{m}} \\
x^{\frac{1}{2}}=\sqrt{x} \\
x^{\frac{1}{3}}=\sqrt[3]{x} \\
x^{\frac{p}{q}}=\sqrt[q]{x^{p}} \operatorname{or}(\sqrt[q]{x})^{p}
\end{gathered}
$$

Geometry

Angle sum of a convex polygon

$$
\text { Angle sum }=180(n-2)^{\circ}
$$

$n \quad$ is the number of sides

Exterior angle sum of a convex polygon

Exterior angle sum $=360^{\circ}$

Surface Area and Volume

Surface area of a cylinder

$$
S A=2 \pi r h+2 \pi r^{2}
$$

$r \quad$ is the radius
$h \quad$ is the height

Coordinate Geometry and Graphs

Length of an interval

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Midpoint of an interval

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Gradient of a line

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Gradient-intercept formula

$$
\begin{array}{ll}
& y=m x+b \\
m & \text { is the gradient } \\
b & \text { is the } \mathrm{y} \text {-intercept }
\end{array}
$$

Point-gradient formula

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$m \quad$ is the gradient

Year 10

Interest and Depreciation

Simple interest

$$
I=P R N
$$

$I \quad$ is the interest
$P \quad$ is the principal invested
$R \quad$ is the rate of interest
$N \quad$ is the number of periods

Compound interest

$$
A=P(1+r)^{n}
$$

$P \quad$ is the principal invested
$r \quad$ is the rate of interest
$n \quad$ is the number of periods
$A \quad$ is the amount after n periods

Depreciation

$$
A=P(1-r)^{n}
$$

$P \quad$ is the original value
r is the rate of depreciation
$n \quad$ is the number of periods
$A \quad$ is the value after n periods

Surface Area and Volume

Surface area of a cone

$$
S A=\pi r s+\pi r^{2}
$$

$r \quad$ is the radius
$s \quad$ is the slant height

Surface area of a sphere

$$
S A=4 \pi r^{2}
$$

$r \quad$ is the radius

Volume of a pyramid

$$
V=\frac{1}{3} A h
$$

$A \quad$ is the base area
$h \quad$ is the height

Volume of a cone

$$
V=\frac{1}{3} \pi r^{2} h
$$

$r \quad$ is the radius
$h \quad$ is the height

Volume of a sphere

$$
V=\frac{4}{3} \pi r^{3}
$$

r
is the radius

Equations and Logarithms

Definition of a logarithm

$$
y=a^{x} \leftrightarrow \log _{a} y=x
$$

Logarithm laws

$$
\begin{gathered}
\log _{a} x y=\log _{a} x+\log _{a} y \\
\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y \\
\log _{a} x^{n}=n \log _{a} x \\
\log _{a} 1=0 \\
\log _{a} a=1
\end{gathered}
$$

Graphs

The parabola

$$
y=a x^{2}+c
$$

The cubic curve

$$
y=a x^{3}+c
$$

The hyperbola

$$
y=\frac{k}{x}
$$

The exponential

$$
y=a^{x}
$$

The circle

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

(a, b) is the centre $r \quad$ is the radius

Trigonometry

Trigonometric relations

$$
\begin{aligned}
& \sin A=\cos \left(90^{\circ}-A\right) \\
& \cos A=\sin \left(90^{\circ}-A\right)
\end{aligned}
$$

Trigonometric functions

$$
\begin{gathered}
\tan \theta=\frac{\sin \theta}{\cos \theta} \\
\sin A=\sin \left(180^{\circ}-A\right) \\
\cos A=-\cos \left(180^{\circ}-A\right) \\
\tan A=-\tan \left(180^{\circ}-A\right)
\end{gathered}
$$

Sine rule

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule

$$
\begin{gathered}
c^{2}=a^{2}+b^{2}-2 a b \cos C \\
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{gathered}
$$

Area rule

$$
A=\frac{1}{2} a b \sin C
$$

Quadratic Equations and the Parabola
Quadratic equation

$$
y=a x^{2}+b x+c
$$

Quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Axis of symmetry

$$
x=-\frac{b}{2 a}
$$

